M A N U L

Classic Q2
 4 Quadrant Circular Current Thyristor Motor Controller

Part 1 Thyristor Motor Controller Q2

Part 2 Analog Control Electronics
REG-xx

Stegmaier-Haupt GmbH

Industrieelektronik-Servoantriebstechnik
Untere Röte 5
D-69231 Rauenberg
Tel.: 06222-61021
Fax: 06222-64988
Email: info@stegmaier-haupt.de
Http: // www.stegmaier-haupt.de
1 Contents
2 Basic information 2
2.1 Safety regulations 2
2.2 Regulations and guidelines 2
2.3 General information and features 4
2.4 Technical data 5
2.5 Specifications 5
2.6 Interfaces 6
3 Mechanical installation 7
3.1 Mounting 7
3.2 Transformer choke 9
4 Electrical installation 10
4.1 Connection diagram 10
4.2 Circuit diagram 11
4.3 Important CE notes 12
4.4 Mains connection 13
4.5 Power supply connection via transformer 14
4.6 Motor connection 15
4.7 Actual value connection 16
5 Settings 17
5.1 Control parameters of the current controller 17
5.2 Signals 18
5.3 Commissioning Q2 $x / x-x$ with REG 19
5.4 Protocol (commissioning) 21
6 Troubleshooting 23
6.1 Troubleshooting 23
6.2 Functional errors 24
7 Guarantee 25
7.1 Guarantee 25

2 Basic information

2.1 Safety regulations

In principle electronic equipment is not fault proof!

Caution - High voltage

Shock hazard! / Danger to life!

Before installation or commissioning begins, this manual must be thoroughly read and understood by the skilled technical staff involved. If any uncertainty arises, the manufacturer or dealer should be contacted.

The devices are power electric parts (EB) used for regulating the energy flow in high-voltage systems.
Protection rating IP00.
The control and power connections may be voltage-carrying without the axis operating! Measure the voltage prior to any disassembly!

2.2 Regulations and guidelines

The devices and their associated components can only be installed and switched on where the local regulations and technical standards have been strictly adhered to.

EU Guidelines 2004/108/EG, 2006/95/EG, 2006/42/EG EN 60204-1, EN292, EN50178, EN60439-1, EN61800-3, ECE-R100 ISO 6469, ISO 26262, ISO 16750, ISO 20653, ISO12100
IEC/UL:
IEC 61508, IEC364, IEC664, UL508C, UL840
VDE Regulations/TÜV Regulations:
Regulations of the statutory
accident insurance and prevention
institution:

VDE100, VDE110, VDE160

VGB4

The user must ensure that in the event of:

- device failure
- incorrect operation
- loss of regulation or control
the axis will be safely de-activated.

It must also be ensured that the vehicles, machines, equipment, or vehicles are fitted with device independent monitoring and safety features.

Unearthed systems (e.g. vehicles) must be protected by means of independent insulation monitors.

Man as well as property must not be exposed to danger at any time!

Assembly

- should only be carried out when all voltages have been removed and the units are secured
- should only be carried out by suitably trained personnel

Installation

- should only be carried out when all voltages have been removed and the units are secured
- should only be carried out by suitably trained personnel for electrics
- should only be carried out in accordance with health and safety guidelines

Adjustments and programming

- should only be carried out by suitably trained personnel with knowledge in electronic drives and their software
- should only be carried out in accordance with the programming advice
- should only be carried out in accordance with safety guidelines

CE

When mounting the units into vehicles, machines, and installations the proper operation of the units may not be started until it is ensured that the machine, the installation, or the vehicle comply with the regulations of the EC machinery directive 2006/42/EG, the EMC guideline 2004/108/EG, and the guideline ECE-R100.
On the described installation and test conditions (see chapter 'CE notes') it is adhered to the EC guideline 2004/108/EG including the EMC standards EN61000-2 and EN61000-4.
A manufacturer's declaration can be requested.
The manufacturer of the machine or installation is responsible for observing the threshold values demanded by the EMC laws.

QS

Test results are archived with the device serial number by the manufacturer for a period of 5 years.
The test protocols can be asked for.

2.3 General information and features

This manual description of the basic unit is only valid in connection with the manual for the control electronics (e.g. REG).

Build

- Switch cabinet built-in devices
- Acc. to the VDE, DIN, and EG regulations
- Standard control electronics REG
- Basic device as intrinsically safe power section with current controller
- Optional uncontrolled field supply unit
- Optional units

Galvanic isolation between

- Power section and housing
- Power section and control electronics

The distances of air gaps and leakage paths adhere to the VDE standards(>8mm).

Components

- Completely isolated thyristor modules, comfortably over-dimensioned
- Only components customary in trade and industrially standardized
- LED displays
- Precision trimming potentiometer for precise adjustment
- Dip-switch for the system setting

Features

\checkmark Series Classic Q2
\checkmark Thyristor controller for dc motors
\checkmark Power range 0.9 to 5.25 KW
\checkmark Driving and braking in all 4 quadrants
\checkmark Energy feedback
\checkmark Intrinsically safe power section
\checkmark Fast analog current control
\checkmark Circular current 2-phase double centre-point circuit
\checkmark Optional uncontrolled field rectifier
$\checkmark \quad$ 26-pole interface
\checkmark Features of the control electronics used: see MANUAL REGxx or third-party product
\checkmark Optional units

Application

\checkmark DC motors for circular current 4Q operation

2.4 Technical data

Q2 220/160-x

Power connection:
Auxiliary voltage connection:
Output voltage
Cooling:
2×100... $2 \times 240 \mathrm{~V}^{\sim}$
200 ... $250 \mathrm{~V}^{\sim}$ or 360 ... 440 V~
max. $\pm 175 \mathrm{~V}^{=}$
self cooling

Q2 220/160		$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	
Input current	A^{\sim}	6	12	16	
Output current	- peak 5s - continuous	$\mathrm{A}^{=}$	$\mathrm{A}^{=}$	20	40
Electric power	kW	10	20	60	
Fuses (fast acting)	Input Output	A	10	3.2	4.8
Mains autotransformer	A		20	35	
Mains isolating transformer	Type	Ul 120-A	UI 150-B	UI 180-B	
Armature choke	Type	UI 150-A	UI 180-B	UI 210-B	
	Type	El 120A-12	El 135B-24	UI 120B-40	
	mH	49	16	7	
Weight	mm	$200 \times 240 \times 100$	$200 \times 240 \times 100$	$200 \times 240 \times 127$	

2.5 Specifications

Common specification

Mains frequency
Protection rating
Format
Humidity rating
Site of installation
Operating temperature range
Extended operating range
Storage temperature range
50 or $60 \mathrm{~Hz} \pm 5 \%$
IP 00
VDE 0100 group C / VDE 0160
Class F acc. to DIN 40040
< 1000m above sea level
$0 . .45^{\circ} \mathrm{C}$
up to $60^{\circ} \mathrm{C}$ reduced by $2 \% /{ }^{\circ} \mathrm{C}$
$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$

Amplification

Input signal
$0 . . . \pm 10 \mathrm{~V}=$
Output

Enable

Current control loop circuit

Control precision
0... $\pm 200 \%$ type current
$>+10$ Volt

Control range
Over-current limiting
± 2 \%
1:50
10 sec. 200% type current
Speed control loop circuit (see MANUAL REG)
Control precision (without actual value error)
Control range
Control range > 1:300

2.6 Interfaces

Interface between the power electronics and the control electronics connector X3 internal

Function
$+24 \mathrm{~V}$
$+15 \mathrm{~V}$

- 24V
- 15V

Device zero GND
I - command value (GND)
I - command value (signal)
Current controller enable

Disable 1

Disable 2
Not connected
I (current) actual
Over-current power section
Ignition angle 1
Ignition angle 2
Drive ready BTB
Not connected

Connector no.
X3: 1 and 2
X3: 3 and 4
X3: 5 and 6
X3: 7 and 8
X3: 9, 10, 11, 12, 13, 14
X3: 15
X3: 16
X3: 17
X3: 18
X3: 19
X3: 20
X3: 21
X3: 22
X3: 23
X3: 24
X3: 25
X3: 26

3 Mechanical installation

3.1 Mounting

3-1 Q1-Q2-Maßbild-M009

Adjustments current controller
Switch S1 PI circuitry
Switch S2
PI circuitry
Poti P2
Circular current
Current controller RVI-1
Current controller RVI-2
increasing when turning counterclockwise

LED - displays - power section

Enable
Current command value
Current controller
Current controller

DIP-switch S3-power section

Enable	green	enabled
RVI-1	green	control active
RVI-2	green	control active

The luminous intensity depends on the trigger angle.
Contact 1 and $2 \quad \mathrm{OFF}=50 \mathrm{~Hz} \quad \mathrm{ON}=60 \mathrm{HZ}$

Dimensions

3.2 Transformer choke

Transformer and choke Q2

Rated current Q2-220-160-		$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$
Mains autotransformer	Type	UI 120-A	UI 150-B	UI 180-B
Dimensions a b c	mm	$160 \times 135 \times 210$	$200 \times 145 \times 270$	$240 \times 190 \times 320$
Weight	kg	13	35	44

Mains isolating transformer	Type	UI 150-A	UI 150-C	UI 180-C
Dimensions a b c	mm	$200 \times 130 \times 270$	$200 \times 190 \times 270$	$240 \times 205 \times 320$
Weight	kg	30	39	51

Circular current choke	Type	El 120A-12	El 135B-24	Ul 120B-40
	mH	49	16	7
Dimensions a b c	mm	$102 \times 102 \times 130$	$115 \times 130 \times 145$	$160 \times 150 \times 210$
Weight	kg	4.3	8.2	16

Ul-core

El core

3-4 V255-Steuer-Trafo

4 Electrical installation

4.1 Connection diagram

4.2 Circuit diagram

4.3 Important CE notes

The devices adhere to the EU guidelines 89/336/EWG of the technical EMC standards EN 61000-2 and 61000-4 provided that the following conditions are observed.

- The device, the power choke, and the filter capacitors are mounted on a $500 \times 500 \times 2 \mathrm{~mm}$ mounting plate.
- The mounting plate must be connected to ground using a $10 \mathrm{~mm}^{2}$ wire.
- The motor housing must be connected to ground using a $10 \mathrm{~mm}^{2}$ wire.
- The device ground X1:8 must be connected to the mounting plate using a $2.5 \mathrm{~mm}^{2}$ wire.
- Device PE screw must be connected to the mounting plate using a $4 \mathrm{~mm}^{2}$ wire, $\mathrm{I}=50 \mathrm{~mm}$.

Two-phase connection

Mains transformer: rf. to techn. data
Filter capacitors:
Conductor length between device and mains transformer
$2 \times 1 \mu F(x)+0.5 \times 1 \mu F(y)$
$<250 \mathrm{~mm}$

I = 1.5 m , shielded
$\mathrm{I}=1.5 \mathrm{~m}$, shielded

Shielding connected to PE

4.4 Mains connection

Note:

The order of the connections to the connector no. or the connection terminals is obligatory. All further advice is non-obligatory.
The input and output conductors may be altered or supplemented in accordance with the electrical standards

Auxiliary voltage, control voltage

The controllers are delivered with an auxiliary voltage input for 230 or $400 \mathrm{~V}^{\sim}$ (please observe the type plate).
The current consumption is 0.1 A .
For Q2 without field option only the fuse F1 (0.8 AT) is installed.

Important note:

The phase position of the auxiliary voltage and the power supply voltage must correspond to each other.
X5:16 corresponds to terminal 13 and X5:17 corresponds to terminal 15.

Field option

The fuses F1 and F2 are rated for field current (2.5A f). The auxiliary voltage and the field supply are combined across the plug-in terminal X5.

Constant field

Connection

Plug-in terminal strip input
Negative field
Positive field
X5:16, X5:17 field
X5:20
X5:19

Voltages

Supply voltage
230 V~
Field voltage 210 V
Supply voltage 400 V~
Field voltage
Supply voltage
Field voltage
$210 \mathrm{~V}^{=}$or $360 \mathrm{~V}^{=}$

$$
210 \text { V }
$$

Fuses

Field current
$\max .1 .5 \mathrm{~A}$
$2 \times 2.5 \mathrm{AF}$
min. $0.5 \mathrm{~mm}^{2}$
Conductor protection min. 10 A

In case the field fuse F1 fails the device is switched off.

4.5 Power supply connection via transformer

- Always use either an isolating transformer or an autotransformer
- Always use an isolating transformer for motors with a weak voltage tolerance or for armature voltage control
- The transformer power is determined by the continuous current and the secondary voltage
- Over-dimension the transformer by 1.5 (dc load)

For 100% ED the transformer power is:
$\mathrm{P}_{\text {Tr }}$. [VA] = secondary voltage \times continuous current $\times 1.5$

The transformers recommended in the technical data are rated for 60\% ED.

4-8 Q2-Netz-Spartrafo-1

- Use superfast-acting fuses F1.1/F1.2 between the transformer and the control unit
- The fuses are monitored concerning failure via the mains monitoring system
- The connector 14 is not monitored
- The phases of the transformer voltage and the auxiliary voltage across X5 must be equal
- The contactor contacts before the transformer must be rated according to the starting current
- Protect the transformer by means of slow fuses

Important:

For transformer secondary voltages < $220 \mathrm{~V} \sim$ the resistors R2 and R3 of the power section must be adapted in the factory.

Specification on order: "Transformer voltage"

Operation with a 60 Hz current supply:

When operating with a mains frequency of 60 Hz the contacts 1 and 2 of the DIP-switch S3 must be set to ON.

4.6 Motor connection

Connection for a positive command value				
Motor - Motor +	Terminal Terminal	$\begin{aligned} & 10 \\ & 12 \\ & \hline \end{aligned}$		
Rating for the circular current choke: $\mathrm{L}[\mathrm{mH}]=\mathrm{U}_{\mathrm{A}} / \mathrm{I}_{\mathrm{A}} \times 2.4$ Motor conductors must be shielded.				

Conductor cross-section (minimal)			
Type current	A	10	$20-30$
Mains power supply	mm^{2}	1.5	$1.5-2.5$
Motor connection	mm^{2}	1.5	$1.5-2.5$

Switching in the armature circuit

- DC circuit disconnected from the mains
- Enable disabled

Caution:

In case of incorrect switching >>> switch-off arc across the switch contacts

Mains failure- Brake resistor
Break contact of the mains contactor K1
Dimension

Resistance RNB = max. armature voltage/2x type current
Braking effect only when the field is excited!

Important:

The power lines must be shielded and laid separately from the control lines!
Electromagnetic interferences >>> see CE notes

4.7 Actual value connection

Tacho control

4Q control with a wide control range and good dynamics
Suitable actual value encoders

- DC tacho generators
- Brushless tachogenerators with evaluation electronics
- Incremental encoder with evaluation electronics

Note: AC or three-phase current tachos with rectification are not suitable.

Connection

Tacho line shielded, connect the shield to the device.
Tacho lines must be laid separately from the power lines (EMV).

For a positive command value
positive tacho $\quad \times 1: 8 \mathrm{~b}$
negative tacho Shield

> X 1:9

X 1:8

REGX

Armature voltage control

4Q control with a small control range and bad dynamics
Mains supply via an isolating transformer!
Ground-referenced actual value

Fuses	$2 \times 0.1 \mathrm{~A} / 500 \mathrm{~V}$		
Armature voltage			
$>180 \mathrm{~V}$		\quad	directly at the tap of the armature voltage
:---			
Directly use additional resistors Rz or			
EXZU-UA1 (manufacturer).			

5 Settings

5.1 Control parameters of the current controller

Optimization of the current controller

- Oscilloscope at the actual current value X3:21
- Current command value step $\pm 1 \mathrm{~V} \quad$ X3:16
- Increase the current command value by 1V-steps to
$\pm 10 \mathrm{~V}$
- P-amplification via the DIP-switches S1 and S2 / Contact 1 and 2
- Optimal setting fig. 1
- Setting not permissible fig. 2
- Integral term with via the DIP-switch S1 and S2 / Contact 3 and 4

5-2 Q1-Q2-Schalter-Strom-1

Oscillogram - current adjustment

Fig. 1
Optimal adjustment

Fig. 2
Amplification too high

5-3 Q1-Q2-Oszillogramm-Strom-1

Fig. 3
Low P-amplification

Note:

Current controller optimization only with oscillographical control

5.2 Signals

Measured values on the control electronics REGxx (see MANUAL REG)
Speed \quad X2:109 $\quad \pm 5 \mathrm{~V}$ or $\pm 10 \mathrm{~V} \quad$ for $\pm 100 \%$ speed

Current X2:111 $\pm 5 \mathrm{~V}$ or $\pm 10 \mathrm{~V} \quad$ for $\pm 200 \%$ current
GND
X2:104

5.3 Commissioning Q2 x/x-x with REG

Check the connections prior to any commissioning. Observe the type plate!

Basic power connections Q2

| Mains connection | Power | Terminal 13, 14, 15 |
| :--- | :--- | :--- | :--- |
| Mains connection | Auxiliary voltage, | Terminal 16, 17 |
| | control voltage | |
| | Observe the phase position between power and control voltage. | |
| Mains connection | Field | Terminal 16,17,18 |
| Motor connection | A1/A2 | Terminal 10, 11, 12 |
| Field connection | F1/F2 | Terminal 19, 20 |
| | | |
| Protective conductor | PE | |
| | The operation without protective conductor PE is forbidden. | |

Basic control connections REG

Enable
Command value
Actual value
Shields

Control electronics REG
Switch
Switch
Switch
Switch
Potentiometer
Potentiometer
Potentiometer
Potentiometer
Potentiometer
Potentiometer
Potentiometer

Contact between X1:3 and X1:4
Signal X1:6
GND X1:8a
Signal X1:9
X1:8
GND X1:8b

Observe the MANUAL REG

Observe the MANUAL REG
Position 4
Position 4
Position 8
Position 8
10\%
10\%
100\%
50\%
Left full scale
Left full scale
50\%

Settings

5.4 Protocol (commissioning)

Current controller settings			
P-amplification S1 / S2 - contact 1 and 2	DIP-switch	S1 and S2	
I-part S1 / S2 - contact 3 and 4			
$50 / 60 \mathrm{~Hz}$	DIP-switch S3		
	1+2 ON (60Hz)	1+2 OFF (50Hz)	
Measured values Qxx-REGxx			
Armature voltage	max.	[V=]	
Armature current	peak	[$\mathrm{A}=$]	
Armature current	continuous	[$\mathrm{A}=$]	
Tacho voltage	max.	[V=]	
Acceleration	X4:16	[V/ms]	
Integrator	X4:14	[V/ms]	
Motor data			
Type plate data			
Manufacturer			
Type		Serial no.	
Motor voltage [$\mathrm{V}=$]		Motor current[$\mathrm{A}=$]	
Field voltage [$\mathrm{V}=$]		Field current [$\mathrm{A}=$]	
Tacho voltage [V/min ${ }^{-1}$]		Tacho type	
Brake [V]		Fan [V]	
Rated speed [$\mathrm{U} / \mathrm{min}$]			

6 Troubleshooting

6.1 Troubleshooting

6.2 Functional errors

Functional errors	
Error	Cause
Motor is not running	Incorrect mains supply connection or motor connection Fuses are tripped Missing enable or command value Current limit too low Missing BTB
Motor is running at high	
speed	Wrong polarity of the actual value (tacho armature voltage) Values of the tacho switch S9 too low Command value too high for armature voltage control Field current too low The fuse of the armature voltage feedback are tripped
Motor is not running	Mechanical tacho failure Tacho fault Speed controller amplification too high or too low smoothly Incorrect PID parameter Command value fault Current controller amplification too high or too low
Motor has no torque	-Current limits to low -Field current too low/motor demagnetized -Mechanical overload of the drive

7 Guarantee

7.1 Guarantee

We guarantee that the device is free from material and production defects. Test results are recorded and archived with the serial number.

The guarantee time begins from the time the device is shipped, and lasts one year. WE undertakes no guarantee for devices which have been modified for special applications.

During the warranty period, we will, at its option, either repair or replace products that prove to be defective, this includes guaranteed functional attributes. We specifically disclaim the implied warranties or merchantability and fitness for a particular purpose. For warranty service or repair, this product must be returned to a service facility designated by us.
For products returned to us for warranty service, the Buyer shall prepay shipping charges to us and we shall pay shipping charges to return the product to the Buyer.
However, the Buyer shall pay all shipping charges, duties, and taxes for products returned to us from another country.
The foregoing warranty shall not apply to defects resulting from:

* improper or inadequate repairs effected by the Buyer or a third party,
* non-observance of the manual which is included in all consignments,
* non-observance of the electrical standards and regulations
* improper maintenance
* acts of nature

All further claims on transformation, diminution, and replacement of any kind of damage, especially damage, which does not affect ou r device, cannot be considered. Follow-on damage within the machine or system, which may arise due to malfunction or defect in the device cannot be claimed.
This limitation does not affect the product liability laws as applied in the place of manufacture (i. e. Germany).

We reserve the right to change any information included in this MANUAL. All connection circuitry described is meant for general information purposes and is not mandatory.
The local legal regulations, and those of the Standards Authorities have to be adhered to. We do not assume any liability, expressively or inherently, for the information contained in this MANUAL, for the functioning of the device or its suitability for any specific application.

All rights are reserved.

Copying, modifying and translations lie outside our liability and thus are not prohibited. Our products are not authorised for use as critical components in the life support devices or systems without express written approval. The onus is on the reader to verify that the information here is current.

